
 AN ADAPTIVE SOFTWARE RELIABILITY PREDICTION APPROACH

Meng-Lai Yin* Lawrence E. James Samuel Keene Rafael R. Arellano Jon Peterson
Raytheon Systems Company

Loc. FU. Bldg. 675, M/S AA341
1801 Hughes Drive, Fullerton, CA 92834 USA

* Contact author. Email: mlyin@west.raytheon.com. Tel: 714-446-4269. Fax: 714-446-3137.

ABSTRACT

Software reliability analysis is inevitable for modern
systems, since a large amount of system functionality
is now dependent on software, and software does
contribute to system failures. Although extensive
research efforts have been devoted to the field of
software reliability, there is no single consensus
model available. On the other hand, most software
reliability models are based on software failure data
collected from the project. This creates a problem
for the designers since, during the early stage,
software failure data are not available. This paper
presents the approach we took to deal with the above
issues. The adaptive approach presented here
continuously adjusts and evaluates the performance
of the models as the software development proceeds.
For the early-stage prediction, a simple and
straightforward method is introduced which can be
used when no failure data are available. This
process, which is based on the adaptive approach and
includes the early-stage prediction method, has been
implemented in a software intensive development
program in progress.

INTRODUCTION

As more and more failures attributed to software are
observed, it is recognized that software reliability
analysis is an inevitable task. However, although
several software reliability models have been
proposed [6], there is still no “standard” model. In
reality, the needs of software reliability prediction
force people to choose one (or more) models so that
some software reliability numbers can be provided.
The problem with this approach is that, at the
beginning of a system development, there is no
failure data available. Thus, no one knows which

model best describes the software product. This
approach is referred to as the blind approach.

Another approach is to apply various models and the
results are compared with actual failure data at the
end of the project. This way, the performance of
different models can be evaluated [12]. The problem
is, the software reliability can not be estimated until
the very-late stage of the development, when
software is almost ready to be delivered. This
approach is referred to as the autopsy approach.

To cope with the above problems, we propose an
approach that analyzes software reliability
adaptively. That is, software reliability is modeled as
the software development proceeds. First, we
provide a rough estimation, to start the whole
process. As the software is being developed, failure
data become available, and software reliability can
be predicted progressively. Comparing the actual
failure data with the predicted numbers, we can see
the trend of the software failure behavior, and
determine which models are the most appropriate
ones. When the software development reaches the
final stage, modeling experience is also becoming
more mature. The ultimate goal is to provide
software reliability estimation using the model that
best characterizes the failure behavior of the
particular software product. Not only that, this
process continuously provides estimation at each
phase of the system development based on the most
current failure information.
Note that even at the beginning of software
development where failure data are not available,
some assurance that the design is meeting its
requirements is desirable. Therefore, a method that
can provide a reasonable estimation before any actual
failure data available is a benefit to the program. In a

survey provided in [6], three models have been
identified as the “early-phase’ models, i.e., Gaffney
and Davis’ phase-based model [3], Agresti and
Evanco’s Ada software defects model [1], and the
Air Force’s Rome Lab model [9].

The basic philosophy of these early-phase models is
to do a prediction based on as much information as
possible. For example, the phase-based model
requires the information of discovered faults found
during the design and implementation phases [3]; the
Rome Lab’s model considers a very comprehensive
list of factors [9]. The Ada software defects model
requires 4 product and 2 process characteristics [1].

Although detailed information is desirable, they are
not necessarily available, or they may be very costly
to obtain at the early stage of the program. In this
paper, we propose a cost-efficient method, called the
early-stage prediction, to be added to the adaptive
prediction process for software reliability.

This adaptive process with the early-stage prediction
method has been implemented in a software
development program in progress. As more
experience is gained and more failure data are
collected, the performance of the early-phase
prediction method is improved.

Tools used: SWEEP, SMERF and CASRE

Requirements

Code

Design

Unit Test

System Test

Early-Stage
Prediction

Faults/Failure Data Collection
Process

characteristics

Code-Phase
Prediction Unit-Test

Phase
Prediction

System-Test
Phase

Prediction
Operational

Phase
Prediction

Operation

Outputs: Software Reliability Estimation
 Performance Evaluation of Prediction Models

Product
characteristics

Waterfall Software Development Process

Adaptive Software Reliability Estimation

Figure 1. The Adaptive Software Reliability Prediction Process

THE ADAPTIVE APPROACH The Process
The adaptive approach is integrated into the software
development process, as shown in Figure 1. The

waterfall-software-development process [6] is used
as the basis. As shown in the figure, a software
product starts with some set of requirements,
followed by design, code, unit test, system test, and
the operation phases.

Five prediction activities are identified, i.e., early-
stage prediction, code-phase prediction, unit-test-
phase prediction, system-test-phase prediction, and
finally the operational phase prediction. The early-
stage prediction will be described in detail later.
Once the software has been designed and
implemented, information about discovered faults
can be obtained, and code-phase estimation can be
performed. The unit-test and system-test phase
predictions can be conducted once those test data are
available. When the software reaches the field
(operational phase), software reliability growth is
projected over its future use1. As failure data are
being collected, the performance of the models can
be evaluated. The outputs are not only the predicted
software reliability number, but also an evaluation of
the models. As illustrated in Figure 1, the outputs are
fed back into the estimation process so that the
software reliability models can be refined and
justified. Moreover, these outputs are fed back into
the development process to improve the product.

Tools Consideration
When faults/failure data are available, tools such as
SWEEP (SoftWare Error Estimation Program),
SMERF (Statistical Modeling and Estimation of
Reliability Functions) and CASRE (Computer-Aided
Software Reliability Estimation) can be applied. In
particular, our process uses CASRE for the
operational phase prediction and SMERF for the
code-phase, unit-test-phase and system-test-phase
prediction. SMERF and CASRE utilize the same set
of models. SMERF is developed at the Naval
Surface Warfare Center (NSWC) [6], and CASRE is
developed in 1993 at Jet Propulsion Lab[10]. Eleven
models are supported, i.e., geometric model,
Jelinski/Moranda De-Eutrophication model,
Littlewood and Verrall’s Bayesian model, John
Musa’s basic execution time model, John Musa’s
logarithmic poisson model, Non-homogeneous
Poisson (execution time), Brooks and Motley’s
discrete model, generalized Poisson model, Non-

1 The issues of asymptotic properties of software reliability
have been studied [11], and different methods have been
proposed.

homogeneous Poisson (interval data),
Scheiderwind’s Max Likelihood model, and
Yamada’s S-shaped growth mode [6].

SWEEP is an implementation of the phase-based
model [3]. It makes use of fault statistics obtained
during the technical review of requirements, design,
and the coding to predict the reliability during test
and operation. Thus, SWEEP can be used before
testing (after coding). On the other hand, CASRE and
SMERF can be used in the system test phase. None
of the above tools can be used for the very early-
stage prediction where no fault or failure data are
available. A methodology that provides estimation
for this situation is the topic of the next section.

EARLY-STAGE PREDICTION

The purpose of this method is to provide a rough
estimation on various software reliability
measurements, based on the limited information. In
particular, the only information required are the size
of the software, measured by source lines of codes
(SLOC), the maturity of the development process2,
and the schedule. Since only a rough estimation is
expected, accuracy is not a main concern for the
early-stage prediction. Instead, accuracy is the goal
of the overall adaptive process, which will be
achieved by continuously refining various models.
The two basic assumptions are (1) the time between
software failures is exponentially distributed (2) the
occurrence of a failure is followed by the removal of
the corresponding fault3.

There are many research efforts devoted to the topic
of imperfect software debugging. In particular, the
asymptotic properties of software failure rates have

2 The software development process level, such as the
SEI(Software Engineering Institute) CMM(Capability
Meturity Model) or the ISO 9000 series of standard by the
International Organization for Standardization, have been
proposed to assist the assessment of inherent faults [5].
3 This implies that we assume there is a one-to-one
mapping between the faults and failures.

n n-1 r+1
λ(n) λ(n-1) λ(r+1) Stable

State λ(r)

Figure 2. Software Failures Behavior Model for Early-Stage Prediction

been studied [11]. There is always a possibility that
new faults will be introduced when removing a
software bug. However, from a statistical point of
view, the number of newly introduced faults is less
significant when the total number of remaining faults
is (relatively) large. It is only when the software
product is reaching the mature stage, where the
number of remaining faults and the number of
introduced faults are in the same order of magnitude,
should the imperfect debugging be concerned. This
phenomenon is captured in our model as the “stable”
state. Figure 2 shows the model that describes the
behavior of software failures.

In this model, a software program is estimated to
have n inherent faults at the beginning of the
estimation. An assumption is made that the
corresponding fault is removed when a software
failure occurs. This will bring the software to the
next state where the number of faults is decreased
(one at a time). This process continues until the
software reaches the stable state. In the stable state,
the asymptotic failure rate phenomenon is observed.
A failure rate function λ(i) is used in this model. This
failure rate function λ(i) can be described in many
different ways, according to the software failure
behavior. For example, it can be described as a
linear increasing function that is in proportion to the
number of remaining faults, i.e., λ(i)=iλ. Or, the
failure rates can be described as a logarithmic
increasing function, i.e., λ(i)=ln[i]×λ. This failure
rate function should be a function of λ. The value of
λ is then calculated based on the model, the
parameters, and the failure rate function specified.

The key of this method is to find out the value of
λ, using the information of the size of the code, the
software process maturity level, and the duration T.
T is the duration from the beginning time the
software is measured (t0) to the time the software is
‘stable’ (td). Theoretically, the selection of t0 can be
any time, for example, the time the software is
finished compilation or the beginning of various
phases indicated in the waterfall process.

According to [2] and [5], the actual failure data from
different programs show that the stable time is
approximately 4 years after delivery for a new
program release. The stabilization period might be
reduced to two years for subsequent program
releases.

Once the starting time and the “stable” time are
determined4, the next step is to estimate the number
of inherent faults, denoted as n, and the number of
remaining faults, denoted as r.

Estimating the numbers of inherent faults and
remaining faults
In order to solve the model described in Figure 2, the
number of inherent faults, i.e., n, and the number of
remaining faults, i.e., r, need to be determined. The
inherent faults are the faults existing at time t0;
remaining faults are the faults existing at time td. A
wide-used method to determine the number of
inherent faults is through the use of fault density5.

There are several studies on estimating the fault
density. Musa’s survey [7][8] provides fault density
estimated for different software life-cycle phases. As
presented in [8], the mean inherent fault density
remaining at the beginning of different phases is
estimated based on actual failure data from many
different programs. As an example, the inherent
fault densities for different phases are summarized in
the following table.

Table 1
Phase Faults/KSLOC
Coding
(after compilation/assembly)

99.5

Unit Test 19.7
System Test 6.01
Operation 1.48

(copied from [8], Table 5.4)

4 Note that this is only a rough estimation.
5 Although Hatton [4] disagrees with this approach, the
size of the code times the fault density is commonly used in
the field.

The work of Aagresti and Evanco’s Ada software
defects estimation method [1] recognizes the
differences in the way organizations develop
software for software reliability prediction. Both
process characteristics and product characteristics
are considered in the overall software defects model.
Moreover, Keene [5] proposed an approach that
applies the software process levels and the size of the
code to predict the number of inherent faults. As an
example, the following table shows the relationship
of the inherent fault densities at the beginning of the
operational phase and the software process levels.

Table 2
SEI CMM Level Faults/KSLOC
5 0.5
4 1.0
3 2.0
2 3.0
1 5.0
Un-rated 6.0

For the value of r, i.e., the number of remaining
faults, the observation in [2] and [5] suggests that,
after four years of deployment, the number of
software faults be reduced to a level less than 10% of
the level at deployment. Thus, one way to
conservatively estimate the value of r is to use 10%
of the fault density estimated at the beginning of the
operation phase.

Calculating λλ
Define a sequence of non-negative real-valued
infinite random variables X0, X1, X2, … , Xi, ….
Each of these random variables represents the time
between two consecutive failures. Recall that
exponential distribution has been assumed. The
value of λ is assessed by utilizing the relation that
E[X1 + X2 + … + Xn-r+1] = E[X1] + E[X2] +… + E[Xn-

r+1]. In other words, we have the equation 1/λ(n)
+1/λ(n-1) +…+1/λ(r+1) = T6. Given the failure rate
function λ(i) and the values of n, r and T, the value of
λ can be calculated.

Stable State MTBF
Plugging λ into the failure rate function with
parameter r, i.e., λ(r), the stable state MTBF can be
estimated, i.e., 1/ λ(r).

6 For exponential distribution 1-e-λt, the expected value is
1/λ.

Expected Number of Failures Occurred
The expected number of software failures occurred
by time t is calculated in the following way. First, we
estimate the state the software is expected to be in at
time t. This can be done by calculating Σ(i× Pi),
where i is the number of existing faults (the state
number), and Pi is the probability that the software is
in state i at time t. Denote the expected number of
existing faults at time t as k. Then, the expected
number of software failures that have occurred by
time t is n-k.

Software MTBF prior to the Stable State
Suppose at time t, the number of existing faults is
predicted (by the above method) to be k, then the
MTBF at time t can be estimated as 1/λ(k). This can
be interpreted as the mea time between software
failures if no further faults are removed.

Software Reliability
According to the standard definition of reliability7,
the software program’s reliability is the probability
that at time t, the software is still in state n (no failure
has occurred yet). This reliability number depends on
the value of λ, which in turn is dependent on the
other parameters and the failure rate function
specified.

Improvement of the Method
Although this method only provides a rough
estimation, the actual data collected in the later
phases will give us feedback on the method and the
parameters used. Furthermore, the experience from
actually implementing the process will improve the
overall approach, which can be used for other
programs. For example, the fault density level at the
stable state used now is 10% of the level when the
software is deployed. This number can be refined or
justified, as more experience is gained. The
accumulation of this experience over time can be
added to the confidence in the reliability parameters,
which can then be used in upcoming programs.

In the next section, an example is used to
demonstrate the early-stage prediction, and the
feedback gained from later phases prediction
activities.

7 The reliability is defined as the probability that the
component operates correctly throughout the interval [t0, t]
given that it was operating correctly at time t0.

AN EXAMPLE

In this example, we consider a software product
whose size is 360 KSLOC (K Source Lines Of
Code). The software process applied is rated as SEI
CMM Level 4. The duration T is assumed to be 4
years. Based on this information, the early-stage
prediction method suggests the fault density at the
beginning of the operation phase is 1.0 per thousand
lines of code, i.e., 360 faults, if the process-driven
fault density model is applied (Table 2). If Table 1 is
used, then the fault density at the beginning of
operation phase is 1.48, i.e., 533 faults. These two
models give us a rough estimation on the number of
inherent faults at the beginning of the operation
phase. According to the discussion presented in the
previous section, we can derive various software
reliability measurements based on this information.

As the software development is progressing,
faults/failures data are collected. The tool SWEEP
was used to perform a phase-based model prediction
[3]. Eight phases were specified, e.g., preliminary
design, detailed design, code, unit test, integration
test, final test, system test, and operation phases.
Figure 3 through Figure 7 show the adaptive
predicted fault density for each phase based on
different sets of available failure data. Specifically,
Figure 3 is the prediction made at the beginning of
code phase, when only the defects found in
preliminary design and detailed design are known.
Figure 4 is the prediction made at the beginning of
unit test, and so on.

Prediction based on the first 2 sets of data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Preliminary
Design

Detailed
Design

Code Unit Test Integration
Test

Final Test System
Test

Operation

Phases

F
au

lt
 D

en
si

ty
 (

pe
r

K
SL

O
C

)

Predicted

Actual

Figure 3. SWEEP Prediction based on 2 sets of data

The stage of the project is currently at the beginning
of system test. Therefore, only the failure data up to
the final-test phase are available. The predictions

show that the operation phase fault density based on
the most updated failure data, i.e., 0.99, is very close
to our early-stage predictions (1.0 if using process-
driven model, 1.48 if using Musa’s survey). This
example demonstrates that we can earn more
confidence in the model that we chose at the earlier
stage, by the predictions performed at the later
phases.

Prediction based on the first 3 sets of data

0

1

2
3

4

5

6
7

8

9
10

Preliminary
Design

Detailed
Design

Code Unit Test Integration
Test

Final Test System Test Operation

Phases

F
au

lt
 D

en
si

ty
 (

pe
r

K
SL

O
C

)

Predicted

Actual

Figure 4. SWEEP Prediction based on 3 sets of data

Prediction based on the first 4 sets of data

0
1
2
3
4
5
6
7
8
9

10

Preliminary
Design

Detailed
Design

Code Unit Test Integration
Test

Final Test System
Test

Operation

Phases

F
au

lt
 D

en
si

ty
 (

pe
r

K
SL

O
C

)

Predicted

Actual

 Figure 5. SWEEP Prediction based on 4 sets of data

Prediction based on the first 5 sets of data

0

1

2

3

4

5

6

Preliminary
Design

Detailed
Design

Code Unit Test Integration
Test

Final Test System
Test

Operation

Phases

F
au

lt
 D

en
si

ty
 (

pe
r

K
SL

O
C

)

Predicted

Actual

 Figure 6. SWEEP Prediction based on 5 sets of data

Prediction based on the first 7 sets of data

0

1

2

3

4

5

6

Preliminary
Design

Detailed
Design

Code Unit Test Integration
Test

Final Test System Test Operation

Phases

F
au

lt
 D

en
si

ty
 (

pe
r

K
SL

O
C

)

Predicted Actual

Figure 7. SWEEP Prediction based on 6 sets of data

CONCLUSION

We have presented an adaptive approach, which is
integrated with the software development process, to
estimate the software failure behavior. This
approach has been implemented in an ongoing
software development program. The key feature of
this method is that the prediction is improving as the
software proceeds. Our basic philosophy is that,
since the software product is evolving continuously,
the software reliability prediction should be
improving continuously.

Moreover, a method that can assess software
reliability in the early stage is presented. This
method requires only very limited information about
the software product and the process. The
asymptotic property of software failure rates is
recognized in the model. While most early-phase
software reliability prediction methods focus on how
to provide a precise prediction with the limited
information, we provide a rough estimation as a
starting point of the overall prediction process. The
accuracy of the estimation is the goal of the overall
process. The approach presented here is readily
performed and should provide adequate initial
software reliability estimation. As more experience
in this early-stage prediction is gained, the method
can be improved and benefit other software
development products.

REFERENCES

[1] W.W. Agreti, and W.M. Evanco, “Projecting
Software Defects From Analyzing Ada Design,”

IEEE Transactions on Software Engineering, Vol.18,
No.11, Nov.1992, page 988-997.
[2] Ram Chillarege, Shriram Biyani, Jeanette
Rosenthal, “Measurement of Failure Rate in Widely
Distributed Software,” Fault Tolerant Computing
Symposium (FTCS), 1995, page 424-433.
[3] J.E. Gaffney and Davis, C.F., “An Automated
Model for Software Early Error Prediction
(SWEEP),” Proceedings of the 13th Minnowbrook
Workshop on Software Reliability, July 1990.
[4] L.Hatton, “Reexamining the Fault Density –
Component Size Connection,” IEEE Software,
March 1997, pp. 89-97.
[5] S.J. Keene, “Modeling Software R&M
Characteristics,” ASQC Reliability Review, Part I
and II, Vol 17, No.2&3, 1997 June, pp.13-22.
[6] Michael R. Lyu (editor), Handbook of Software
Reliability Engineering, McGraw-Hill, 1996.
[7] John Musa, “A Theory of Software Reliability
and Its Application,” IEEE Transactions on Software
Engineering, Vol. SE-1, No.3, Sep. 1975, page 312-
327.
[8] John D. Musa, Anthony Iannino, Kazuhira
Okumoto, Software Reliability - Professional
Edition, McGraw-Hill, 1990.
[9] Rome Laboratory (RL), Methodology for
Software Reliability Prediction and Assessment,
Technical Report RL-TR-92-52, volumes 1 and 2,
1992.
[10] A.P. Nikora, “CASRE User’s Guide,” Jet
Proopulsion Laboratories, August 1993.
[11] M.C.J. Van Pul, Statistical Analysis of Software
Reliability Models, Stichting Mathematisch Centrum,
Amsterdam, 1993.
[12] A. Wood, “Predicting Software Reliability,”
IEEE Computer, Nov. 1996, pp. 69-77.

